Coverage for cvx/risk/cvar/cvar.py: 100%
27 statements
« prev ^ index » next coverage.py v7.6.8, created at 2025-01-09 10:59 +0000
« prev ^ index » next coverage.py v7.6.8, created at 2025-01-09 10:59 +0000
1# Copyright 2023 Stanford University Convex Optimization Group
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14from __future__ import annotations
16from dataclasses import dataclass
18import cvxpy as cvx
19import numpy as np
21from ..bounds import Bounds
22from ..model import Model
25@dataclass
26class CVar(Model):
27 """Conditional value at risk model"""
29 alpha: float = 0.95
30 """alpha parameter to determine the size of the tail"""
32 n: int = 0
33 """number of samples"""
35 m: int = 0
36 """number of assets"""
38 def __post_init__(self):
39 self.k = int(self.n * (1 - self.alpha))
40 self.parameter["R"] = cvx.Parameter(shape=(self.n, self.m), name="returns", value=np.zeros((self.n, self.m)))
41 self.bounds = Bounds(m=self.m, name="assets")
43 def estimate(self, weights, **kwargs):
44 """Estimate the risk by computing the Cholesky decomposition of self.cov"""
45 # R is a matrix of returns, n is the number of rows in R
46 # n = self.R.shape[0]
47 # k is the number of returns in the left tail
48 # k = int(n * (1 - self.alpha))
49 # average value of the k elements in the left tail
50 return -cvx.sum_smallest(self.parameter["R"] @ weights, k=self.k) / self.k
52 def update(self, **kwargs):
53 ret = kwargs["returns"]
54 m = ret.shape[1]
56 self.parameter["R"].value[:, :m] = kwargs["returns"]
57 self.bounds.update(**kwargs)
59 def constraints(self, weights, **kwargs):
60 return self.bounds.constraints(weights)